Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.343
Filtrar
1.
Nat Commun ; 15(1): 3196, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609363

RESUMO

The dorsal hippocampus (dHPC) is a key brain region for the expression of spatial memories, such as navigating towards a learned reward location. The nucleus accumbens (NAc) is a prominent projection target of dHPC and implicated in value-based action selection. Yet, the contents of the dHPC→NAc information stream and their acute role in behavior remain largely unknown. Here, we found that optogenetic stimulation of the dHPC→NAc pathway while mice navigated towards a learned reward location was both necessary and sufficient for spatial memory-related appetitive behaviors. To understand the task-relevant coding properties of individual NAc-projecting hippocampal neurons (dHPC→NAc), we used in vivo dual-color two-photon imaging. In contrast to other dHPC neurons, the dHPC→NAc subpopulation contained more place cells, with enriched spatial tuning properties. This subpopulation also showed enhanced coding of non-spatial task-relevant behaviors such as deceleration and appetitive licking. A generalized linear model revealed enhanced conjunctive coding in dHPC→NAc neurons which improved the identification of the reward zone. We propose that dHPC routes specific reward-related spatial and behavioral state information to guide NAc action selection.


Assuntos
Objetivos , Hipocampo , Éteres Fosfolipídicos , Animais , Camundongos , Comportamento Apetitivo , Memória Espacial
2.
Exp Mol Med ; 56(2): 441-452, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383581

RESUMO

Helicobacter pylori, particularly cytotoxin-associated gene A (CagA)-positive strains, plays a key role in the progression of gastric cancer (GC). Ferroptosis, associated with lethal lipid peroxidation, has emerged to play an important role in malignant and infectious diseases, but the role of CagA in ferroptosis in cancer cells has not been determined. Here, we report that CagA confers GC cells sensitivity to ferroptosis both in vitro and in vivo. Mechanistically, CagA promotes the synthesis of polyunsaturated ether phospholipids (PUFA-ePLs), which is mediated by increased expression of alkylglycerone phosphate synthase (AGPS) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), leading to susceptibility to ferroptosis. This susceptibility is mediated by activation of the MEK/ERK/SRF pathway. SRF is a crucial transcription factor that increases AGPS transcription by binding to the AGPS promoter region. Moreover, the results demonstrated that CagA-positive cells are more sensitive to apatinib than are CagA-negative cells, suggesting that detecting the H. pylori CagA status may aid patient stratification for treatment with apatinib.


Assuntos
Ferroptose , Helicobacter pylori , Neoplasias Gástricas , Humanos , Citotoxinas , Éteres Fosfolipídicos
3.
Nat Commun ; 15(1): 750, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286800

RESUMO

The hippocampus is pivotal in integrating emotional processing, learning, memory, and reward-related behaviors. The dorsal hippocampus (dHPC) is particularly crucial for episodic, spatial, and associative memory, and has been shown to be necessary for context- and cue-associated reward behaviors. The nucleus accumbens (NAc), a central structure in the mesolimbic reward pathway, integrates the salience of aversive and rewarding stimuli. Despite extensive research on dHPC→NAc direct projections, their sufficiency in driving reinforcement and reward-related behavior remains to be determined. Our study establishes that activating excitatory neurons in the dHPC is sufficient to induce reinforcing behaviors through its direct projections to the dorso-medial subregion of the NAc shell (dmNAcSh). Notably, dynorphin-containing neurons specifically contribute to dHPC-driven reinforcing behavior, even though both dmNAcSh dynorphin- and enkephalin-containing neurons are activated with dHPC stimulation. Our findings unveil a pathway governing reinforcement, advancing our understanding of the hippocampal circuity's role in reward-seeking behaviors.


Assuntos
Dinorfinas , Núcleo Accumbens , Éteres Fosfolipídicos , Núcleo Accumbens/fisiologia , Hipocampo/fisiologia , Recompensa , Neurônios/fisiologia
4.
J Lipid Res ; 65(2): 100499, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218337

RESUMO

Ferroptosis is a novel cell death mechanism that is mediated by iron-dependent lipid peroxidation. It may be involved in atherosclerosis development. Products of phospholipid oxidation play a key role in atherosclerosis. 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) is a phospholipid oxidation product present in atherosclerotic lesions. It remains unclear whether PGPC causes atherosclerosis by inducing endothelial cell ferroptosis. In this study, human umbilical vein endothelial cells (HUVECs) were treated with PGPC. Intracellular levels of ferrous iron, lipid peroxidation, superoxide anions (O2•-), and glutathione were detected, and expression of fatty acid binding protein-3 (FABP3), glutathione peroxidase 4 (GPX4), and CD36 were measured. Additionally, the mitochondrial membrane potential (MMP) was determined. Aortas from C57BL6 mice were isolated for vasodilation testing. Results showed that PGPC increased ferrous iron levels, the production of lipid peroxidation and O2•-, and FABP3 expression. However, PGPC inhibited the expression of GPX4 and glutathione production and destroyed normal MMP. These effects were also blocked by ferrostatin-1, an inhibitor of ferroptosis. FABP3 silencing significantly reversed the effect of PGPC. Furthermore, PGPC stimulated CD36 expression. Conversely, CD36 silencing reversed the effects of PGPC, including PGPC-induced FABP3 expression. Importantly, E06, a direct inhibitor of the oxidized 1-palmitoyl-2-arachidonoyl-phosphatidylcholine IgM natural antibody, inhibited the effects of PGPC. Finally, PGPC impaired endothelium-dependent vasodilation, ferrostatin-1 or FABP3 inhibitors inhibited this impairment. Our data demonstrate that PGPC impairs endothelial function by inducing endothelial cell ferroptosis through the CD36 receptor to increase FABP3 expression. Our findings provide new insights into the mechanisms of atherosclerosis and a therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Cicloexilaminas , Ferroptose , Fenilenodiaminas , Animais , Camundongos , Humanos , Fosfolipídeos , Fosforilcolina , Éteres Fosfolipídicos/metabolismo , Éteres Fosfolipídicos/farmacologia , Camundongos Endogâmicos C57BL , Células Endoteliais da Veia Umbilical Humana/metabolismo , Endotélio/metabolismo , Glutationa/metabolismo , Ferro/metabolismo , Proteína 3 Ligante de Ácido Graxo
5.
J Lipid Res ; 65(2): 100504, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246237

RESUMO

Coronary atherosclerosis is caused by plaque build-up, with lipids playing a pivotal role in its progression. However, lipid composition and distribution within coronary atherosclerosis remain unknown. This study aims to characterize lipids and investigate differences in lipid composition across disease stages to aid in the understanding of disease progression. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize lipid distributions in coronary artery sections (n = 17) from hypercholesterolemic swine. We performed histology on consecutive sections to classify the artery segments and to investigate colocalization between lipids and histological regions of interest in advanced plaque, including necrotic core and inflammatory cells. Segments were classified as healthy (n = 6), mild (n = 6), and advanced disease (n = 5) artery segments. Multivariate data analysis was employed to find differences in lipid composition between the segment types, and the lipids' spatial distribution was investigated using non-negative matrix factorization (NMF). Through this process, MALDI-MSI detected 473 lipid-related features. NMF clustering described three components in positive ionization mode: triacylglycerides (TAG), phosphatidylcholines (PC), and cholesterol species. In negative ionization mode, two components were identified: one driven by phosphatidylinositol(PI)(38:4), and one driven by ceramide-phosphoethanolamine(36:1). Multivariate data analysis showed the association between advanced disease and specific lipid signatures like PC(O-40:5) and cholesterylester(CE)(18:2). Ether-linked phospholipids and LysoPC species were found to colocalize with necrotic core, and mostly CE, ceramide, and PI species colocalized with inflammatory cells. This study, therefore, uncovers distinct lipid signatures correlated with plaque development and their colocalization with necrotic core and inflammatory cells, enhancing our understanding of coronary atherosclerosis progression.


Assuntos
Doença da Artéria Coronariana , Hiperlipoproteinemia Tipo II , Placa Aterosclerótica , Animais , Suínos , Lipidômica , Ceramidas , Necrose , Fosfatidilcolinas , Éteres Fosfolipídicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Biomed Pharmacother ; 171: 116149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38266621

RESUMO

Metastasis is the leading cause of cancer mortality. Metastatic cancer is notoriously difficult to treat, and it accounts for the majority of cancer-related deaths. The ether lipid edelfosine is the prototype of a family of synthetic antitumor compounds collectively known as alkylphospholipid analogs, and its antitumor activity involves lipid raft reorganization. In this study, we examined the effect of edelfosine on metastatic colonization and angiogenesis. Using non-invasive bioluminescence imaging and histological examination, we found that oral administration of edelfosine in nude mice significantly inhibited the lung and brain colonization of luciferase-expressing 435-Lung-eGFP-CMV/Luc metastatic cells, resulting in prolonged survival. In metastatic 435-Lung and MDA-MB-231 breast cancer cells, we found that edelfosine also inhibited cell adhesion to collagen-I and laminin-I substrates, cell migration in chemotaxis and wound-healing assays, as well as cancer cell invasion. In 435-Lung and other MDA-MB-435-derived sublines with different organotropism, edelfosine induced G2/M cell cycle accumulation and apoptosis in a concentration- and time-dependent manner. Edelfosine also inhibited in vitro angiogenesis in human and mouse endothelial cell tube formation assays. The antimetastatic properties were specific to cancer cells, as edelfosine had no effects on viability in non-cancerous cells. Edelfosine accumulated in membrane rafts and endoplasmic reticulum of cancer cells, and membrane raft-located CD44 was downregulated upon drug treatment. Taken together, this study highlights the potential of edelfosine as an attractive drug to prevent metastatic growth and organ colonization in cancer therapy. The raft-targeted drug edelfosine displays a potent activity against metastatic organ colonization and angiogenesis, two major hallmarks of tumor malignancy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Humanos , Camundongos Nus , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Éteres Fosfolipídicos/metabolismo , Éteres Fosfolipídicos/farmacologia , Éteres Fosfolipídicos/uso terapêutico , Apoptose , Microdomínios da Membrana/metabolismo
7.
Pharmaceut Med ; 38(2): 145-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296916

RESUMO

BACKGROUND: Cyproterone acetate (CPA) is a synthetic progesterone derivative introduced in the 1970s and prescribed as antiandrogenic therapy for inoperable prostate cancer, sexual deviations in men, and signs of androgenization in women. In 2020, the CPA summary of product characteristics (SmPC) was revised to include an updated special warning and precaution about (1) the risk of meningioma with increasing cumulative dose and (2) contraindication in patients with meningioma or history of meningioma. A Direct Healthcare Professional Communication (DHPC) was distributed. The European Medicine Agency's Pharmacovigilance Risk Assessment Committee requested that marketing authorization holders in Europe conduct a survey to assess physicians' knowledge of the updated key safety information. The primary objective of this study was to measure physicians' awareness (i.e., did they receive and review the revised SmPC and DHPC) and level of knowledge and understanding of the key safety information pertaining to the restricted use of CPA monotherapy because of the risk of meningioma. METHODS: This cross-sectional web-based survey was administered to dermatologists, endocrinologists, gynecologists, urologists, oncologists, psychiatrists, and general practitioners in France, Germany, Poland, Spain, and the Netherlands who had prescribed CPA monotherapy in the previous 12 months to assess awareness of the risk of meningioma associated with CPA monotherapy. RESULTS: Of the 613 physicians who participated, 85% correctly indicated that CPA monotherapy should be prescribed with the lowest effective dose, 75% correctly indicated that the risk of meningioma increases with increasing cumulative CPA monotherapy doses, and 73% correctly indicated that treatment with CPA-containing products must be stopped permanently if a patient is diagnosed with meningioma. Overall, 40% of physicians reported having received the DHPC, and 42% reported having received the revised SmPC. CONCLUSIONS: Despite low recall of receipt of the updated SmPC and DHPC, most physicians surveyed are aware of the meningioma risk and actions to mitigate the risk.


Assuntos
Neoplasias Meníngeas , Meningioma , Éteres Fosfolipídicos , Médicos , Masculino , Humanos , Feminino , Acetato de Ciproterona/efeitos adversos , Meningioma/induzido quimicamente , Estudos Transversais , Europa (Continente) , Neoplasias Meníngeas/induzido quimicamente
8.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944523

RESUMO

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Assuntos
Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Caenorhabditis elegans , Ácido Oleico/farmacologia , Receptores Ativados por Proliferador de Peroxissomo , Sobrecarga de Ferro/tratamento farmacológico , Ferro , Éteres Fosfolipídicos
9.
Arch Biochem Biophys ; 752: 109871, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38110110

RESUMO

Ether phospholipids are synthesized by a series of enzymes localized in peroxisomes, the endoplasmic reticulum (ER), and the Golgi apparatus. During this process, the lipid intermediate alkylacylglycerol (AAG) synthesized in the ER is transferred from the site of its synthesis to the Golgi apparatus. In this study, we determined whether ceramide transport protein (CERT) is a candidate for AAG transfer. A lipid transfer assay revealed that CERT can mediate AAG transfer between phospholipid liposomes. AAG transport activity was markedly inhibited by the CERT inhibitor HPA-12 and reduced when the lipid transport domain of CERT was deleted. Suppression of CERT in HEK293 cells resulted in increased levels of plasmanyl-PC, which is synthesized by the ER-residing choline/ethanolamine phosphotransferase 1 (CEPT1). The mRNA levels and enzymatic activity of plasmanyl-PC synthesizing enzymes were not increased in CERT-deficient cells, indicating that the increase in plasmanyl-PC results from AAG accumulation in the ER. Re-introduction of CERT into CERT-deficient cells caused a decrease in plasmanyl-PC. Taken together, our findings suggest for the first time that CERT is involved in the transfer of AAG from the ER to the Golgi apparatus and plays a role in the biosynthesis of ether phospholipids.


Assuntos
Proteínas de Transporte , Ceramidas , Humanos , Transporte Biológico , Proteínas de Transporte/metabolismo , Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Éteres Fosfolipídicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
10.
Reprod Fertil Dev ; 35(12): 622-639, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37463606

RESUMO

CONTEXT: Ethanolamine plasmalogens (EPls) and choline plasmalogens (CPls) are classes of ethanolamine ether phospholipids (ePE) and choline ether phospholipids (ePC), respectively. EPls play crucial roles in maternal and breastfed infant bodies and stimulate gonadotropin secretion by gonadotrophs. AIMS: To estimate changes in and importance of plasma concentrations of EPls and CPls, utilising newly developed enzymatic fluorometric assays for ePE and ePC in postpartum Holstein cows. METHODS: Plasma samples were collected from 3weeks before expected parturition until approximately 8weeks after parturition (16 primiparous and 38 multiparous cows) for analysis. KEY RESULTS: Plasma concentrations of ePE and ePC, most of which are plasmalogens, declined before and increased after parturition and stabilised near the day of the first postpartum ovulation (1stOV). From weeks 2 to 3 after parturition, third-parity cows exhibited ePE concentrations that were higher than those of other parity cows. The days from parturition to 1stOV correlated with days from parturition to conception. On the day of 1stOV, milk yield correlated with plasma concentration of both ePE and ePC, while ePC concentration correlated negatively with milk fat percentage. At the early luteal phase after 1stOV, plasma ePE concentration correlated with plasma anti-Müllerian hormone concentration (r =0.39, P <0.01), and plasma ePC concentration correlated with plasma follicle-stimulating hormone concentration (r =0.43, P <0.01). CONCLUSION: The concentrations of ePE and ePC changed dramatically around parturition and 1stOV, and the concentrations correlated with important parameters for milk production and reproduction. IMPLICATIONS: The blood plasmalogen may play important roles in postpartum dairy cows.


Assuntos
Éteres Fosfolipídicos , Plasmalogênios , Gravidez , Feminino , Humanos , Bovinos , Animais , Lactação , Período Pós-Parto , Parto , Paridade , Leite
11.
Bioorg Chem ; 138: 106615, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244229

RESUMO

A series of nine novel ether phospholipid-dinitroaniline hybrids were synthesized in an effort to deliver more potent antiparasitic agents with improved safety profile compared to miltefosine. The compounds were evaluated for their in vitro antiparasitic activity against L. infantum, L.donovani, L. amazonensis, L. major and L. tropica promastigotes, L. infantum and L. donovani intracellular amastigotes, Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the oligomethylene spacer between the dinitroaniline moiety and the phosphate group, the length of the side chain substituent on the dinitroaniline and the choline or homocholine head group were found to affect both the activity and toxicity of the hybrids. The early ADMET profile of the derivatives did not reveal major liabilities. Hybrid 3, bearing an 11-carbon oligomethylene spacer, a butyl side chain and a choline head group, was the most potent analogue of the series. It exhibited a broad spectrum antiparasitic profile against the promastigotes of New and Old World Leishmania spp., against intracellular amastigotes of two L. infantum strains and L. donovani, against T. brucei and against T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes. The early toxicity studies revealed that hybrid 3 showed a safe toxicological profile while its cytotoxicity concentration (CC50) against THP-1 macrophages being >100 µM. Computational analysis of binding sites and docking indicated that the interaction of hybrid 3 with trypanosomatid α-tubulin may contribute to its mechanism of action. Furthermore, compound 3 was found to interfere with the cell cycle in T. cruzi epimastigotes, while ultrastructural studies using SEM and TEM in T. cruzi showed that compound 3 affects cellular processes that result in changes in the Golgi complex, the mitochondria and the parasite's plasma membrane. The snapshot pharmacokinetic studies showed low levels of 3 after 24 h following oral administration of 100 mg/Kg, while, its homocholine congener compound 9 presented a better pharmacokinetic profile.


Assuntos
Antiprotozoários , Doença de Chagas , Trypanosoma cruzi , Humanos , Antiparasitários/farmacologia , Antiprotozoários/farmacologia , Éteres Fosfolipídicos/uso terapêutico , Doença de Chagas/tratamento farmacológico , Colina/uso terapêutico
12.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37042812

RESUMO

The nuclear envelope (NE) is important in maintaining genome organization. The role of lipids in communication between the NE and telomere regulation was investigated, including how changes in lipid composition impact gene expression and overall nuclear architecture. Yeast was treated with the non-metabolizable lysophosphatidylcholine analog edelfosine, known to accumulate at the perinuclear ER. Edelfosine induced NE deformation and disrupted telomere clustering but not anchoring. Additionally, the association of Sir4 at telomeres decreased. RNA-seq analysis showed altered expression of Sir-dependent genes located at sub-telomeric (0-10 kb) regions, consistent with Sir4 dispersion. Transcriptomic analysis revealed that two lipid metabolic circuits were activated in response to edelfosine, one mediated by the membrane sensing transcription factors, Spt23/Mga2, and the other by a transcriptional repressor, Opi1. Activation of these transcriptional programs resulted in higher levels of unsaturated fatty acids and the formation of nuclear lipid droplets. Interestingly, cells lacking Sir proteins displayed resistance to unsaturated-fatty acids and edelfosine, and this phenotype was connected to Rap1.


Assuntos
Membrana Nuclear , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Telômero , Proteínas de Membrana/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Éteres Fosfolipídicos/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Nat Commun ; 14(1): 2194, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069167

RESUMO

Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Éteres Fosfolipídicos/metabolismo , Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Homeostase
14.
Nat Chem Biol ; 19(3): 378-388, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36782012

RESUMO

Ferroptosis is an iron-dependent form of cell death driven by oxidation of polyunsaturated fatty acid (PUFA) phospholipids. Large-scale genetic screens have uncovered a specialized role for PUFA ether phospholipids (ePLs) in promoting ferroptosis. Understanding of the enzymes involved in PUFA-ePL production, however, remains incomplete. Here we show, using a combination of pathway mining of genetic dependency maps, AlphaFold-guided structure predictions and targeted lipidomics, that the uncharacterized transmembrane protein TMEM164-the genetic ablation of which has been shown to protect cells from ferroptosis-is a cysteine active center enzyme that selectively transfers C20:4 acyl chains from phosphatidylcholine to lyso-ePLs to produce PUFA ePLs. Genetic deletion of TMEM164 across a set of ferroptosis-sensitive cancer cell lines caused selective reductions in C20:4 ePLs with minimal effects on C20:4 diacyl PLs, and this lipid profile produced a variable range of protection from ferroptosis, supportive of an important but contextualized role for C20:4 ePLs in this form of cell death.


Assuntos
Aciltransferases , Éteres Fosfolipídicos , Aciltransferases/metabolismo , Éteres Fosfolipídicos/farmacologia , Fosfolipídeos/química , Fosfatidilcolinas , Oxirredução
15.
J Colloid Interface Sci ; 630(Pt A): 629-637, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36272217

RESUMO

HYPOTHESIS: A well-defined discoidal bicelle composed of three lipids, specifically zwitterionic long-chain 1,2­dipalmitoyl phosphocholine (DPPC) and short-chain 1,2­dihexanoyl phosphocholine (DHPC) doped with anionic 1,2­dipalmitoyl phosphoglycerol (DPPG) provides a generalized template for the synthesis of hydrophobic polymer nano-rings. The lipid molar ratio of DPPC/DHPC/DPPG is 0.71/0.25/0.04. The detailed investigation and discussion were based on styrene but tested on three other vinyl monomers. EXPERIMENTS: The structure of nano-rings is identified through the detailed analysis of small angle X-ray/neutron scattering (SAXS and SANS) data and transmission electron micrographs (TEM), supported by the differential scanning calorimetric (DSC) data before and after polymerization. The investigation covers samples with a styrene-to-lipid ratio ranged varied from 1:50 to 1:10. FINDINGS: The styrene monomers are initially located at both the discoidal planar (long-chain lipid rich) and rim (short-chain lipid rich) regions. During polymerization, they migrate to the more fluid rim regionsection. The formation mechanism involves the interplay of hydrophobic interaction, mismatched miscibility of polystyrene between the ordered and disordered phases, and crystallinity of the long lipid acyl chains. This facile synthesis is proven applicable for several hydrophobic monomers. The well-defined nano-rings greatly enhance the interfacial area and have the potential to be the building blocks for functional materials, if monomers are incorporated with desirable functions, for future applications.


Assuntos
Fosforilcolina , Polímeros , Espalhamento a Baixo Ângulo , Polimerização , Difração de Raios X , Éteres Fosfolipídicos , Estirenos , Bicamadas Lipídicas/química
16.
Biofactors ; 48(6): 1203-1216, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36370412

RESUMO

Fatty acids and phospholipid molecules are essential for determining the structure and function of cell membranes, and they hence participate in many biological processes. Platelet activating factor (PAF) and its precursor plasmalogen, which represent two subclasses of ether phospholipids, have attracted increasing research attention recently due to their association with multiple chronic inflammatory, neurodegenerative, and metabolic disorders. These pathophysiological conditions commonly involve inflammatory processes linked to an excess presence of PAF and/or decreased levels of plasmalogens. However, the molecular mechanisms underlying the roles of plasmalogens in inflammation have remained largely elusive. While anti-inflammatory responses most likely involve the plasmalogen signal pathway; pro-inflammatory responses recruit arachidonic acid, a precursor of pro-inflammatory lipid mediators which is released from membrane phospholipids, notably derived from the hydrolysis of plasmalogens. Plasmalogens per se are vital membrane phospholipids in humans. Changes in their homeostatic levels may alter cell membrane properties, thus affecting key signaling pathways that mediate inflammatory cascades and immune responses. The plasmalogen analogs of PAF are also potentially important, considering that anti-PAF activity has strong anti-inflammatory effects. Plasmalogen replacement therapy was further identified as a promising anti-inflammatory strategy allowing for the relief of pathological hallmarks in patients affected by chronic diseases with an inflammatory component. The aim of this Short Review is to highlight the emerging roles and implications of plasmalogens in chronic inflammatory disorders, along with the promising outcomes of plasmalogen replacement therapy for the treatment of various PAF-related chronic inflammatory pathologies.


Assuntos
Plasmalogênios , Fator de Ativação de Plaquetas , Humanos , Plasmalogênios/química , Plasmalogênios/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Éteres Fosfolipídicos/metabolismo , Membrana Celular/metabolismo , Doença Crônica
17.
Food Funct ; 13(19): 10134-10146, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36106708

RESUMO

Emerging evidence suggests that sea cucumber ether phospholipids (ether-PLs) can modulate high-fat diet (HFD)-induced metabolic disorders. However, whether this modulation is associated with metabolic pathways related to oxidative stress and inflammation remains unclear. This study aimed to investigate the antioxidative and anti-inflammatory effects on HFD-fed mice and the associated metabolism pathways in response to administration with sea cucumber ether-PLs using integrated biochemistry and a metabolomics approach. Biochemistry analysis and histological examinations showed that sea cucumber ether-PLs significantly decreased body weight gain and fat deposition in tissues. PE-P was superior to PC-O in alleviating reactive oxygen species (ROS), malondialdehyde (MDA) and inflammatory responses (IL-6, TNF-α and MCP-1) in the HFD-induced mouse model. Serum metabolomics analysis revealed that it upregulated four metabolites and downregulated twenty-four metabolites compared to those in HFD mice after ether-PL administration. Pathway analysis indicated that sea cucumber ether-PLs alleviate the HFD-induced inflammation and oxidative stress by three main metabolic pathways, namely fatty acid metabolism, branched-chain amino acid (BCAA) metabolism, and trichloroacetic acid (TCA) metabolism. Taken together, sea cucumber ether-PLs showed great potential to become a natural functional food against oxidative stress and inflammation caused by HFD.


Assuntos
Dieta Hiperlipídica , Pepinos-do-Mar , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Malondialdeído , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Éteres Fosfolipídicos/farmacologia , Éteres Fosfolipídicos/uso terapêutico , Espécies Reativas de Oxigênio , Pepinos-do-Mar/metabolismo , Ácido Tricloroacético/farmacologia , Ácido Tricloroacético/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
18.
Drug Saf ; 45(11): 1369-1380, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36107383

RESUMO

INTRODUCTION: Healthcare professionals (HCPs) are informed about new drug safety issues through Direct Healthcare Professional Communications (DHPCs). The influence of DHPC content on the impact of the communication is unclear. OBJECTIVES: The aim of this study was to assess the effect of content elements 'frequency of the safety issue', 'seriousness of the safety issue', 'need to take action', 'life span of drug involved' and 'type of evidence supporting the safety issue' on hospital-based HCPs' preferences and responses towards DHPCs. METHODS: A survey study including a conjoint experiment was performed among hospital-based HCPs in the Netherlands. Hypothetical DHPCs varying on the five content elements were constructed. Each respondent received eight out of 16 hypothetical DHPCs and was asked about (1) importance to be informed (fixed-point scale), (2) preferred communication timing (multiple options) and (3) their stated actions (multiple options). Associations were tested using generalized linear mixed models. RESULTS: In total, 178 HCPs participated. DHPCs concerning more frequent or serious safety issues, or requiring action, were associated with a higher perceived importance to be informed and a preference for immediate communication. Periodic communication was preferred for DPHCs concerning less frequent or serious safety issues. The most commonly stated action was to discuss the DHPC with colleagues. Monitoring was common when this was recommended. High frequency and seriousness were associated with more prescribing-related actions. CONCLUSION: Frequency and seriousness of the safety issue and the recommended action are likely to influence the impact of DHPCs. The timing of communication could be tailored depending on the content, where less urgent safety issues might be communicated periodically.


Assuntos
Atitude do Pessoal de Saúde , Comunicação , Hospitais , Humanos , Países Baixos , Éteres Fosfolipídicos
19.
Virology ; 574: 57-64, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926244

RESUMO

The persistence of latent HIV-1 reservoirs in cells presents a formidable challenge towards a complete HIV cure. Edelfosine is an FDA-approved investigational, anti-neoplastic drug. In this study, we aimed to investigate its role as a HIV-1 Latency Reversal Agent (LRA) using latency model cell lines. Our findings demonstrated that edelfosine reactivated latent HIV-1 viruses in myeloid cells in a dose and time-dependent manner. The mechanism of reactivation by edelfosine involved the activation of NF-κB and AP1 pathways in these cells. The reactivated virus was non-infectious. Delineating the mechanism of non-infectious virus production revealed an increased stabilization of cellular APOBEC3G protein as well as its enhanced incorporation into the released viruses. Thus, our study demonstrated for the first time an additional role of edelfosine in reactivation of latent HIV-1 and production of non-infectious virus. Our results have paved the way for repurposing of edelfosine as a novel HIV-1 latency reversal agent.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , HIV-1/fisiologia , Humanos , Células Mieloides/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Éteres Fosfolipídicos , Ativação Viral , Latência Viral
20.
Cell Rep ; 40(8): 111231, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001957

RESUMO

There is a continued unmet need for treatments that can slow Parkinson's disease progression due to the lack of understanding behind the molecular mechanisms underlying neurodegeneration. Since its discovery, ferroptosis has been implicated in several diseases and represents a therapeutic target in Parkinson's disease. Here, we use two highly relevant human dopaminergic neuronal models to show that endogenous levels of α-synuclein can determine the sensitivity of dopaminergic neurons to ferroptosis. We show that reducing α-synuclein expression in dopaminergic neurons leads to ferroptosis evasion, while elevated α-synuclein expression in patients' small-molecule-derived neuronal precursor cells with SNCA triplication causes an increased vulnerability to lipid peroxidation and ferroptosis. Lipid profiling reveals that ferroptosis resistance is due to a reduction in ether-linked phospholipids, required for ferroptosis, in neurons depleted of α-synuclein (α-syn). These results provide a molecular mechanism linking α-syn levels to the sensitivity of dopaminergic neurons to ferroptosis, suggesting potential therapeutic relevance.


Assuntos
Ferroptose , Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/metabolismo , Éteres Fosfolipídicos/metabolismo , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...